Preparation, thermal expansion, high pressure and high temperature behavior of $Al_2(WO_4)_3$

S. N. ACHARY*, G. D. MUKHERJEE[‡], A. K. TYAGI^{*,§}, S. N. VAIDYA[‡] *Applied Chemistry Division, and [‡]High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India *E-mail: aktyagi@magnum.barc.ernet.in*

The titled compound Al₂(WO₄)₃ was synthesized by a conventional solid state reaction and characterized by powder XRD. It crystallizes in an orthorhombic (Pbcn, No. 60) lattice, with unit cell parameters as 12.582(2), 9.051(1), 9.128(2) Å, and V = 1039.5(3) (Å)³. The compound was found to show negative thermal expansion (NTE) behavior in the temperature range of 25 to 850°C. The average linear NTE coefficient (α_1), in this temperature range, was -1.5×10^{-6} K⁻¹. The effect of pressure at ambient temperature, was studied by a Bridgman Anvil (BA) apparatus, to reveal that there is no irreversible phase transition up to 8 GPa. The effect of high pressure and high temperature on this compound was studied by a Toroid Anvil (TA) apparatus. This compound has a limited stability under high pressure and temperature, as it undergoes a decomposition to AIWO₄ and WO_{3-x} with a partial oxygen loss. As an off-shoot of this work, certain new modifications of WO_{3-x} under pressure and temperature were observed, viz., monoclinic, tetragonal and an orthorhombic modifications at 5 GPa/1400°C, 3 GPa/900°C and 1.8 GPa/1030°C, respectively. The detailed XRD studies of the products are presented here. © *2002 Kluwer Academic Publishers*

1. Introduction

Thermal expansion is an important property, generally considered for any material to be used at an elevated temperature. An increase in an-harmonic potential with increasing temperature causes the thermal expansion of chemical bonds, which in turn results in dilation of the crystal lattice. However, there are several unusual examples where despite the expansion of the chemical bonds, there is either an overall contraction in the lattice or a very small, or no expansion at all. These special cases of expansion are classified as negative thermal expansion (NTE) or low or zero thermal expansion (LTE, ZTE). Such thermal expansion behavior was reported in some of the tungstates and molybdates [1]. In the tungstate family, very large NTE coefficient is observed for ZrW₂O₈ [2]. By now it is, in general, believed that the negative expansion behavior in tungstate or molybdate or phosphate are due to the transverse vibrations of the bridging oxygen, in M-O-M' [3]. The negative thermal expansion behavior can also be expected in less dense framework structured compounds, within which the polyhedra can undergo different orientations [3]. The negative thermal expansion behavior is also reported in silica [4], ice [5] and zeolites [6].

Negative expansion ceramic materials are likely to have a probability for tunable thermal expansion (TE) behavior. The ceramic materials with NTE or ZTE have a wide ranging applications e.g., as stress absorbing materials. They can have applications as buffer to compen-

sate the unwanted expansion in the both mechanical and electronics components, e.g., ZrW₂O₈: Cu composite is used for electronic applications [7]. The NTE materials can be used as an additive in the common house-hold components like oven, dishes, and cooking-wares [8]. However, almost all the applications essentially require the retention of its structure through out the application conditions. It is known that under the pressure of about 2-3 kbar, the cubic ZrW₂O₈ undergoes a phase transition to the orthorhombic modification [9]. This transition is reported to be irreversible but and can be reverted back by heating above 100°C. This cubic to orthorhombic phase transition has been shown to accompany by a reduction in volume, and also it was reported that both the mentioned phases exist in a range of pressure of about 0.2-0.3 GPa [10]. The orthorhombic- ZrW_2O_8 has, however, a negative thermal expansion below room temperature and positive thermal expansion above room temperature. Above room temperature, a continuous negative expansion is reported. It was reported to become amorphous at higher pressure [11]. The amorphization of such a loosely connected polyhedra containing structures with pressure has been well reported in phosphates [12]. Thus the pressure has a pronounced effect in these compounds. Hence, a fresh interest has been invoked in the study of effect of pressure on such network compounds. In this communication, we report the effect of pressure and temperature on $Al_2(WO_4)_3$.

§Author to whom all correspondence should be addressed.

In the phase diagram of Al₂O₃-WO₃ [13], a congruently melting compound with compositions 2Al₂O₃-5WO₃ has been reported, which was later identified as $Al_2(WO_4)_3$. The crystal data reported by Craig *et al.* [14] shows that it has an orthorhombic structure and there is no phase transition up to the melting point. From the crystal structure data, Craig et al. [14] established its composition as $Al_2(WO_4)_3$. Sleight *et al.* have reported that it undergoes a displacive phase transition below room temperature [15]. The low temperature structure was reported as monoclinic which is very closely related to the orthorhombic structure [16]. They also mentioned that the transition from monoclinic to orthorhombic structure is accompanied by a volume expansion. Besides this, it has an anomalous thermal expansion behavior e.g., NTE [1]. Al₂(WO₄)₃ is one of the rare compounds to show trivalent ion (Al^{3+}) ion conduction [17]. Hence, it is worth while to examine its behavior under pressure and temperature, to predict its applicability under pressure or temperature or both. Herein, we report some results under Bridgman Anvil and Toroid Anvil experiments.

2. Experimental

The titled compound was prepared by heating an intimate mixture of appropriate amounts of well dried Al₂O₃ and WO₃, at 900°C for 42 hrs followed by 1000°C for 30 hrs with intermittent grindings. The product was characterized by powder XRD for its phase purity. The powder XRD data was collected using a Philips PW1710 model diffractometer in the two theta range 10 to 90°, with Ni filtered Cu K_{α} radiation. The powder XRD pattern of the starting material $Al_2(WO_4)_3$ is shown in Fig. 1. The powdered product was palletized and sintered for 18 hrs at 1100°C. A dense pellet (\sim 12 mm diameter and 10 mm height) with approximately 88% of theoretical density could be obtained by this heat treatment. The thermal expansion behavior was studied using a dilatometer model LKB 3185. A fused quartz push rod was used to transmit the expansion or contraction to the transducer, i.e., a dial gauge. The percent linear thermal expansions, at various tem-

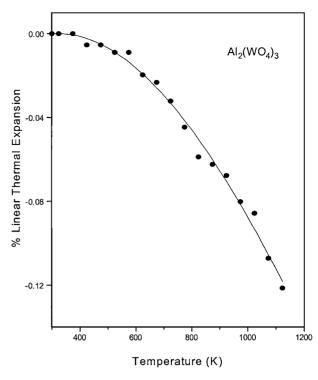
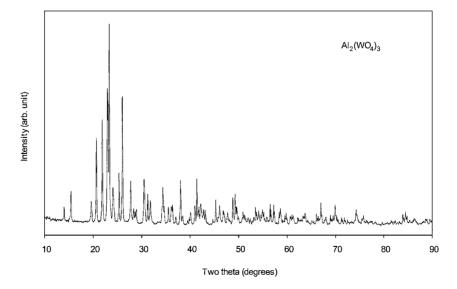
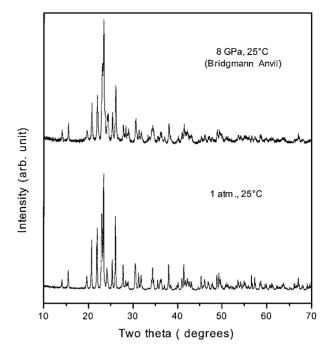



Figure 2 Variation of percent linear thermal expansion versus temperature.

peratures were given in Fig. 2. The high pressure and room temperature experiments were carried out with a Bridgman Anvil (BA) apparatus (ϕ of face 12.7 mm) [18], in which the sample was pressed inside a pyrophilite gasket by two faces of the Anvil. The sample was held at 8 GPa for 48 hrs and then retrieved after releasing the pressure. The high pressure and high temperature experiments were carried out with Toroid Anvil (TA) Apparatus [19] (ϕ face 31 mm, ϕ cavity 13.5 mm). The sample was heated in a BN sample holder encapsulated inside a graphite resistive heater. The desired pressure was attained gradually within a span of about 30 minutes. The temperature was subsequently increased gradually to the desired value where the sample was held for 8–10 min., and then quenched, by cutting off the power. The pressure was then released slowly. The products thus obtained were characterized

Figure 1 Powder XRD pattern of $Al_2(WO_4)_3$.


by powder XRD in the two-theta range of $10-70^{\circ}$ for the phase analysis.

3. Results and discussion

The compound synthesized at 1000°C is found to be phase pure (JCPDS 24-1101). The observed reflections were indexed on an orthorhombic (Pbcn, No. 60) unit cell with lattice parameters as 12.582(2), 9.051(1), 9.128(2) Å, and V = 1039.5(3) (Å)³. The structure of this compound is iso-structural [14] to $Sc_2(WO_4)_3$ [20]. Thus, the orthorhombic $Al_2(WO_4)_3$ (O-Al₂(WO₄)₃) structure is built with $W(1)O_4$ and $W(2)O_4$ tetrahedra and Al(1)O₆ octahedra. The AlO₆ octahedra share each of their corners with WO₄ tetrahedra and each of the WO_4 tetrahedra share corners with the AlO_6 octahedra to build the three dimensional open network. The $Sc_2(WO_4)_3$ structure is known to be adopted in tungstates [20] with heavier lanthanides. On other hand, the tungstates of Fe^{3+} have a low temperature monoclinic modification of Sc₂(WO₄)₃ [21]. However, $Al_2(WO_4)_3$, is an stable compound with smaller metal ion like Al^{3+} , with an orthorhombic $Sc_2(WO_4)_3$ structure.

The negative thermal expansion behavior was revealed from the plot of % linear thermal expansion versus temperature (Fig. 2). It was observed that the % linear thermal expansion of Al₂(WO₄)₃, remains constant initially and then it starts decreasing. Thus the titled compound shows negative thermal expansion in the region of 25 to 850°C. The coefficient of average linear thermal expansion (α_1) is -1.5×10^{-6} C. It may be added here that the thermal expansion behavior of $O-Al_2(WO_4)_3$ is controversial till date. Initially the α_1 value (from dilatometric study) for this compound was shown to be about -3×10^{-6} C [1]. However, on the basis of the diffraction studies, this compound was shown to have an anisotropic expansion with a net positive volume expansion, $\alpha_v = +2.2 \times 10^{-6} \text{ C}$ $[1], +4.5 \times 10^{-6} C [22]$. The present dilatometric study shows that $Al_2(WO_4)_3$ have negative thermal expansion behavior. However, the contribution of micro-cracks and defects to NTE cannot be ignored. The magnitude of negative expansion is very small as compared to that of $Sc_2(WO_4)_3$ [23] or $Y_2(WO_4)_3$ [22] structure. It may be noted that the anisotropic expansion has been reported in most of the compounds with $Sc_2(WO_4)_3$ type structure [24].

In the Bridgman Anvil experiment, the sample was held under a static pressure of 8 GPa for 48 hrs. The sample was retrieved after releasing the pressure very slowly. The recovered sample was examined by powder XRD. The observed XRD pattern along with the starting phase (O-Al₂(WO₄)₃) has been shown in Fig. 3. The observed reflections could be indexed on an orthorhombic unit cell with lattice parameters 12.577(3), 9.044(3) and 9.128(2) Å, and volume 1038.3(5) (Å)³. It may be mentioned that at this pressure the sharp diffraction lines are getting broadened, as seen from Fig. 3. However, we did not observe any split reflections attributable to monoclinic modification of Al₂(WO₄)₃ [16]. A comparison of the unit cell parameters of the samples, before and after subjecting to pressure shows

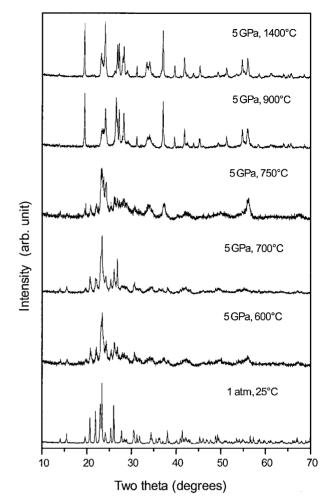
Figure 3 Powder XRD patterns of $Al_2(WO_4)_3$ at pressure of 1 atm. and 8 GPa (BA).

them to be very similar. Hence, it was inferred that there is no irreversible change in the structure. The structures of Al₂(WO₄)₃, both in orthorhombic and monoclinic phases are quite similar, hence distinction of the two structures from the conventional powder XRD is a bit difficult. Therefore, at this stage it was concluded that there is no irreversible structural change under BA experimental condition. However, any reversible pressure induced transition could not be ruled out. It has been reported earlier that the cubic ZrW₂O₈ undergoes an irreversible phase transition [10] and also amorphization under pressure [11]. The amorphization of ZrW_2O_8 is also an irreversible transition. However, in this particular experiment on $Al_2(WO_4)_3$, no such irreversible transformation was observed up to 8 GPa. Thus, a remarkable conclusion can be drawn that $Al_2(WO_4)_3$ has an excellent chemical stability under pressure.

Amorphization of the crystalline materials under pressure is mainly due to the lowering of distances between atoms below a limiting distance [11, 25]. The striking difference in the ZrW_2O_8 and $Al_2(WO_4)_3$ structure is that, in the later all the WO₄ tetrahedra are isolated, while in the former structure one corner of WO₄ tetrahedra remains free. This pattern of arrangements of WO₄ tetrahedra in ZrW₂O₈, makes the structure flexible. In addition, the WO₄ tetrahedra of ZrW₂O₈ are arranged in such a fashion so as to have a W···O-W type linkage, parallel to the three fold axis. The distance between W-W is reduced by the application of pressure due to the deformation of the $W \cdots O-W$ link. Thus, the application of pressure can reduce the distance between two W⁶⁺ causing the destabilization, which leads to disordered structure. Such close contact links are absent in the $Al_2(WO_4)_3$. The typical shortest W-W bond length in ZrW₂O₈ is about 4.16 Å, while the typical shortest W-W separation in $Al_2(WO_4)_3$ is about 4.39 Å. In the O-ZrW₂O₈ the typical minimum separation comes to about 3.84 Å. Also,

TABLE I Summary of phases identified at different pressures and temperatures

S. No.	P (GPa)	T (°C)	Phases found		
1	Room pressure	25	O ^a		
2	8 (BA)	25	0		
3	5	1400	AlWO ₄ + WO _{3-x}		
4	5	900	"		
5	5	750	"		
6	5	700	0		
7	5	600	0		
8	3	900	$AIWO_4 + WO_{3-x}$		
9	3	600	0		
10	1.8	1030	$AIWO_4 + WO_{3-x}$		
11	1.5	900	"		
12	1.7	750	0		


^aO = Orthorhombic Al₂(WO₄)₃ phase.

the WO₄ tetrahedra in Al₂(WO₄)₃ is rigid and hence would need still higher pressure to make the changes in them, responsible for amorphization. Thus the destabilization leading to amorphous structure in Al₂(WO₄)₃, may occur at very high pressure, whereas the pressure used in the present study might be insufficient.

The high temperature and high pressure experiments were carried out in a toroid anvil apparatus. The effect of temperature was studied by performing experiments at various temperatures at a particular pressure. Also, the similar study was repeated at different pressures. The summary of various experiments and their phase analyses are given in Table I.

The initial experiments were carried out at a higher temperature and higher pressure. Then the pressure and temperature were decreased in successive experiments. The sample was quenched from the desired temperature and pressure, and analyzed by powder XRD. The results are shown in Figs 4–7, for the experiments carried out at different temperature and pressure. It was observed that above certain temperature, at a particular pressure, the $Al_2(WO_4)_3$ phase decomposes.

The XRD patterns of the retrieved samples from the experiments conducted at 5 GPa and various temperatures are given in Fig. 4. It was observed that the products of the experiment below 750°C, at 5 GPa indicate the retention of the $Al_2(WO_4)_3$. The XRD pattern of products obtained from the experiments carried out at 700 and 600°C shows that although the peak positions remain same compared to that in the parent phase, however, the peak profiles of XRD pattern, observed in the temperature range 600 to 700°C, are broadened implying that there is a tendency towards amorphization. Therefore, it may be suggested that at a relatively lower temperature and higher pressure the sample may get amorphize. In the present experiments, the sample is not completely transformed to an amorphous phase due to the insufficient time. The XRD pattern of the samples at 900° and 1400°C shows that the parent phase is not retained, and new peaks are observed. A complete XRD analyses of the sample obtained from 1400°C and 5 GPa pressure are given in Table II and Fig. 5. A comparison of the observed reflections and the assigned reflections is given in Table II. The presence of phases like AlWO₄ [JCPDS 34-1226, 29-96], and BN [JCPDS

Figure 4 Powder XRD patterns of $Al_2(WO_4)_3$ of sample from TA experiments at 5 GPa, and different temperatures.

34-421] is inferred from the analysis of XRD pattern. Also, an additional phase, which is closely similar to WO_{2.92} [JCPDS 30-1387], has been observed. It may be mentioned here that the residual BN comes from the BN cup, which was difficult to separate from the sample after the experiment. It also signifies the inertness of BN towards Al₂(WO₄)₃, compared to its high reactivity with nano-crystalline Fe₂O₃, Y₂O₃ [26]. A comparison of the XRD patterns of the sample of the experiments at 1400 and 900° shows that the reflections corresponding to AlWO₄ phase remain identical. It needs to be mentioned that $WO_{2.92}$ reflections are not exactly matching as represented in the Table II. Hence, it may be concluded that the second phase in addition to AlWO₄, which is supposed to be WO₃, undergoes different extent of oxygen losses depending on temperature and pressure. Hence, the additional phase is designated as WO_{3-x} . Thus a partial reduction of W^{6+} in WO₃ leads to the formation of some WO_{3-x} (the value of x depends on temperature and pressure).

The XRD patterns of the products obtained from the toroid anvil experiments at 3 GPa are given in Fig. 6. The phase analysis reveals that at the pressure of 3 GPa at 900°C, Al₂(WO₄)₃ decomposes to AlWO₄ and WO_{3-x} type phases. But the experiment carried out at about 600°C shows that the parent phase is retained. The experiment at 3 GPa pressure and temperature 900°C shows the complete decomposition. Thus to

TABLE II Phases formed at 5 GPa and 1400°C
--

			WC	WO_{3-x}		AlWO ₄				
	Obser	ved data	WO _{2.92} (30-1387) ^a	(34-1226) ^a		(29-96) ^a			
S. no.	<i>d</i> (Å)	<i>I</i> / <i>I</i> ₀ (%)	<i>d</i> (Å)	I/I_0 (%)	<i>d</i> (Å)	I/I_0 (%)	<i>d</i> (Å)	I/I_0 (%)		
1	4.551	95			4.57	100	4.53	90		
2	3.838	43	3.820	100						
3	3.695	100	3.680	78						
4	3.404	9								
5	3.328	60	BN	34-421						
6	3.278	63			3.29	70	3.27	100		
7	3.188	37								
8	3.153	56			3.16	65	3.15	100		
9	3.076	10								
10	2.870	22			2.876	10	2.861	5		
11	2.693	24	2.710	40						
12	2.639	33	2.650	38						
13	2.586	7								
14	2.427	94			2.432	60	2.421	20		
15	2.273	24			2.276	30	2.267	30		
			3.20							
16	2.159	42			2.161	30				
17	2.145	10					2.149	10		
18	2.123	7			2.122	3				
19	2.065	12			2.067	10	2.060	15		
20	2.002	21			2.002	25	1.995	40		
21	1.847	10			2.002	20	1,,,,,			
22	1.782	20			1.785	16	1.776	5		
23	1.714	6	1.71, 1.70		11/00	10	11,70	U		
24	1.676	39	1.69, 1.68		1.681	30	1.672	15		
25	1.642	39			1.646	40	1.635	50		
26	1.639	34			110110		11000	20		
20	1.577	9			1.580	9	1.571	15		
28	1.516	10			1.516	8	1.510	5		
29	1.455	8			1.455	9	1.010	2		
30	1.435	8			1.435	4				
31	1.423	3			1.433	9				
32	1.3846	7			1.721	,				
33	1.3689	9			1.370	4				

^aCorresponding JCPDS numbers.

know the minimum pressure required for decomposition, the experiments were carried out at the relatively lower pressure in the toroid anvil and the results are shown in Fig. 7. The similar kind of decomposition was observed even at pressure of about 1.5, 1.8 GPa, but at a relatively higher temperature, viz. about 900°C. A comparison of pressure at about a constant temperature is shown in Fig. 8. It was observed that at 1.7 GPa

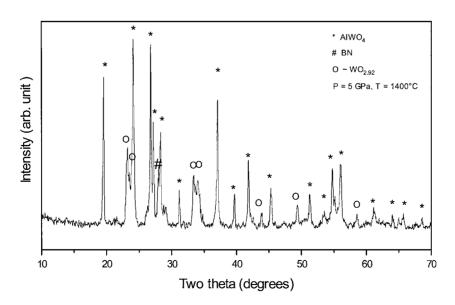
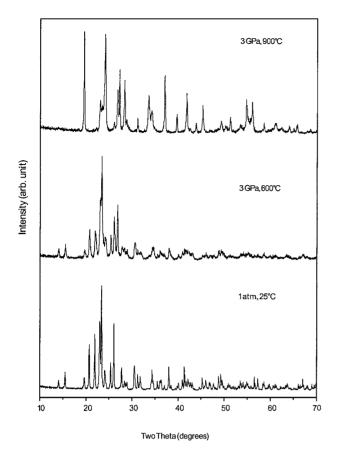
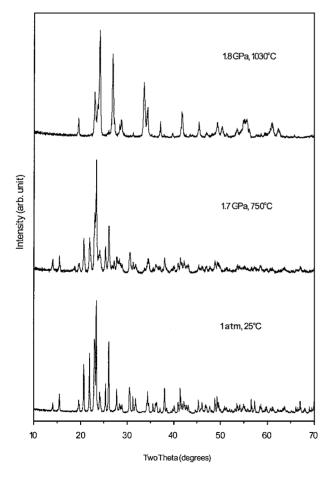




Figure 5 Powder XRD patterns of Al₂(WO₄)₃ of samples from TA experiment at 5 GPa, 1400°C.

Figure 6 Powder XRD patterns of $Al_2(WO_4)_3$ of sample from TA experiments at 3 GPa, and different temperatures.

Figure 7 Powder XRD patterns of $Al_2(WO_4)_3$ of sample from TA experiments at <2 GPa, and different temperatures.

pressure the parent phase is retained even up to about 750°C. The decomposition is thus found to be temperature and pressure dependent. Another striking observation is that the decomposition temperature increases with decreasing pressure.

The structure of AlWO₄ reported by Doumerc *et al.* [27] with a monoclinic unit cell with lattice parameters 9.069(5), 5.705(6), 4.541(5) Å, $\beta = 92.3(0)^{\circ}$, and volume 234.8 (Å)³ for Z = 4. Later, this compound was reported by Vishnevskii et al. [28] to have an orthorhombic unit cell with lattice parameters 6.573, 6.319, 2.874 Å, and volume 119.4 (Å)³ for Z = 2. Doumerc *et al.* had used high pressure and high temperature technique for the preparation of AlWO₄ starting from Al₂O₃, WO₃ and WO₂ whereas the later authors prepared it using Al₂O₃ and WO₃ under an argon atmosphere with low oxygen partial pressure. In the present study, the observed reflections assigned to AlWO₄ phase are given in Table III. The selected observed reflections could be indexed on a monoclinic unit cell with lattice parameters are 4.552(1), 2.870(1), 4.545(2) Å, and $\beta = 92.19(2)^{\circ}$, V = 59.34(4) (Å)³. The observed unit cell volume in the present study is about half of the value reported by Vishnevskii et al. [28] and about one fourth of the volume reported by Doumerc et al. [27]. Thus, the unit cell represented by these authors might have also accounted for some other weaker reflections observed by them. The identified reflections for AlWO₄, from the sample obtained from 5 GPa and 1400°C are marked in Fig. 5.

The XRD patterns of the $Al_2(WO_4)_3$ phases retained in various experiments were indexed and the refined lattice parameters are given in Table IV. It was observed that the unit cell volume remains almost unaltered after these experiments. However, sharp new peaks are seen to develop with increasing temperature. Similarly the observed reflections assigned to AlWO₄ type phase in

TABLE III Typical reflections assigned for AlWO4 type phase (5 GPa, 1400°C)

S. no.	$d_{\rm obs}({\rm \AA})$	$d_{\text{cal}}(\text{\AA})$	$I/I_0(\%)$	h k l
1	4.551	4.548	100	100
2	3.278	3.277	66	-101
3	3.153	3.154	59	101
4	2.870	2.870	23	010
5	2.427	2.427	100	011
6	2.273	2.274	25	200
7	2.159	2.159	44	-111
8	2.123	2.123	7	111
9	2.065	2.065	13	-201
10	2.002	2.003	22	201
11	1.782	1.783	21	210
12	1.676	1.677	41	-211
13	1.642	1.643	41	211
14	1.639	1.639	34	-202
15	1.577	1.577	9	202
16	1.516	1.516	10	300
17	1.455	1.455	8	-301
18	1.435	1.435	8	020
19	1.423	1.423	3	301
20	1.369	1.369	9	021

Typical monoclinic unit cell parameters 4.552(1), 2.870(1), 4.545(2) Å, $\beta = 92.19(2)^{\circ}$, V = 59.34(4) (Å)³.

TABLE IV Typical unit cell parameters of Al₂(WO₄)₃ phases in different temperature and pressure experiments

S. no	P (GPa)	T (°C)	a (Å)	<i>b</i> (Å)	<i>c</i> (Å)	$V (\text{\AA})^3$
1	Ambient pressure	27	12.582(2)	9.051(1)	9.128(2)	1039.5(3)
2	8 (BA)	27	12.577(3)	9.044(3)	9.128(2)	1038.3(5)
3	3	600	12.582(4)	9.057(3)	9.124(4)	1039.7(7)
4	1.7	750	12.594(4)	9.049(2)	9.133(3)	1040.8(5)

TABLE V Typical unit cell parameters of AlWO4 phases in different temperature and pressure experiments

S. no	P (GPa)	<i>T</i> (°C)	a (Å)	<i>b</i> (Å)	<i>c</i> (Å)	β (°)	V (Å) ³
1	5	1400	4.552(1)	2.870(1)	4.545(2)	92.19(2)	59.34(4)
2	3	900	4.551(1)	2.869(1)	4.542(2)	92.23(3)	59.26(4)
3	1.8	1030	4.556(3)	2.870(2)	4.533(5)	92.14(6)	59.23(8)

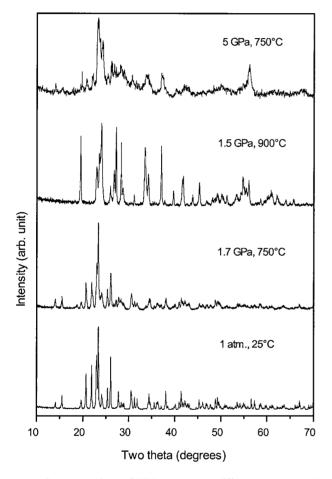


Figure 8 A comparison of XRD patterns at different pressure and temperature.

various experiments are given in the Table V. Similar comparison of volumes of the different phases shows them to be almost identical. Therefore, it can be inferred that the stoichiometry of $Al_2(WO_4)_3$ and $AlWO_4$ remains same under various temperature and pressure.

The Al₂(WO₄)₃ structure has Al³⁺ in octahedral coordination whereas the coordination of both kinds of W⁶⁺ is tetrahedral. The structure of AlWO₄ in monoclinic unit cell has been shown [27] to consist of AlO₆ and WO₆ octahedra. These units share their corners to form the three dimensional network. The synthesis of AlWO₄ has been reported [27, 28] by the reaction of stoichiometric amounts of Al₂O₃, WO₃ and WO₂ at the high pressure and high temperature. The partial reduction of Al₂(WO₄)₃ unit causes the decomposition. It is known that the WO₃ structure consists of WO_6 octahedra [29]. The temperature can cause the partial reduction of W^{6+} , as the reduction of Al^{3+} is not expected. The decomposition of Fe₂(WO₄)₃ structure to Fe₂WO₆ [30] and WO₃ [29] was reported [21] at ambient pressure at relatively lower temperature i.e., about 600°C. Thus an insight of the decomposition of $Al_2(WO_4)_3$, based on the above reports, indicates it to be driven by the increase in the coordination number of tungsten polyhedra from four to six. The preparation of $Cr_2(WO_4)_3$ at about 900°C always ends in Cr_2WO_6 and WO₃, which further more signifies the importance of the stability of octahedral tungsten under certain conditions. In the present case of $Al_2(WO_4)_3$, tungsten has a tetrahedral environment, as in ZrW2O8 which undergoes decomposition to ZrO2 and WO3 at elevated temperature. This further supports for the stability of octahedral tungsten. It is well known that the application of pressure in general leads to increase in the coordination number. Thus the decomposition of $Al_2(WO_4)_3$ might be due to the lowering of the free energy, with the formation of AlWO₄ and WO_{3-x} phases, in which the cations have stable coordination. Therefore, it is not surprising to observe the decomposition of $Al_2(WO_4)_3$ under stringent experimental conditions employed in the present investigation, although it melts congruently under ambient pressure.

The temperature assisted formation of WO_{3-x} , in an oxygen deficient atmosphere was initially reported by Magneli [31]. These oxygen deficient WO_{3-x} phases were explained by the different crystallographic shear, which is well known both theoretically [31] and experimentally [32]. Since the observed reflections assigned to WO_{3-x} do not exactly match to the reported WO_{3-x} phases, they were considered as some distinct oxygen deficient phases. However, at this stage the exact compositions of WO_{3-x} phases, observed in the present investigations, could not be concluded. XRD data of some the new modifications of WO_{3-x} are given in Table VI. It is known [29] that WO₃ structure is built from corner sharing WO₆ octahedra, similar to ReO₃. However, depending on the temperature, these octahedra tend to share their edges leading to the formation of different shear planes, which leads to the formation of different structures [32]. Therefore,

TABLE VI	WO_{3-x} phases at	different temperature an	nd pressure
----------	----------------------	--------------------------	-------------

$P = 5 \text{ GPa}, 1400^{\circ}\text{C}$			$P = 3 \text{ GPa}, 900^{\circ}\text{C}$			$P = 1.8 \text{ GPa}, 1030^{\circ}\text{C}$					
d _{obs} (Å)	$d_{\rm cal}$ (Å)	I/I_0	h k l	dobs (Å)	$d_{\rm cal}$ (Å)	I/I_0	h k l	dobs (Å)	$d_{\rm cal}$ (Å)	I/I_0	h k l
3.838	3.839	43	110	3.869	3.865	28	001	3.864	3.864	42	110
3.695	3.695	100	011	3.693	3.694	100	110	3.776	3.777	29	011
3.404	3.404	9	002	3.107	3.107	12	101	3.691	3.691	100	210
3.188	2.185	37	-102	2.669	2.671	37	111	3.148	3.150	14	503
3.076	3.065	10	102	2.613	2.612	20	200	3.109	3.108	16	304
2.693	3.692	24	012	1.849	1.847	11	220	2.817	2.821	2	702
2.639	3.642	33	-202	1.518	1.519	9	311	2.678	2.680	50	512
2.586	2.580	7	-112					2.612	2.613	30	413
2.145	2.150	10	103					2.494	2.491	2	604
1.847	1.848	10	022					2.168	2.165	25	10 0 0
1.714	1.714	6	411					2.085	2.082	4	415
								1.985	1.985	3	714
a = 7.834(9) Å		a = 5.	225(2) Å			1.937	1.937	4	606		
b = 4.	400(5) Å			c = 3.865(3) Å			1.899	1.899	3	307	
c = 6.	817(6) Å			$V = 105.5(1) (\text{\AA})^3$			1.848	1.850	15	407	
$\beta = 93$. ,				agonal)			1.813	1.812	10	905
	$35.6(4) (\text{Å})^3$				5			1.714	1.713	8	423
	noclinic)							1.676	1.675	18	308
	,							1.652	1.653	16	13 0 1
								1.640	1.641	9	408
								1.576	1.575	4	1006
								1.558	1.559	4	723
								1.521	1.521	16	920
								1.484	1.483	6	1115
											21.648(7) Å
											: 3.927(2) Å
											13.777(4) Å
											1171.2(7) Å
											thorhombic)

often the WO_{3-x} phases have octahedral and trigonal bipyramids, which share both corners and edges, leading to dense structures. There are few high pressure and high temperature phases of WO_{3-x} [33–35]. The structures of these phases were obtained by high resolution electron microscope and powder XRD. In the present experiments, it was found that the WO_{3-x} phases formed from different temperature and pressure conditions have different reflections, but their unit cell parameters (Table VI) are, however, closely related to either WO_3 or some other modifications of WO_{3-x} or tungsten bronze compounds.

The observed reflections assigned for WO_{3-x} at 5 GPa and 1400°C were found similar to that of WO_{2.92}. However, there are some extra reflections, which could not be accounted by WO_{2.92} [JCPDS-30-1387]. A complete list of the observed reflections and their comparison with the closely reported reflections for WO_{2.92} is given in Table II. Hence, this phase was believed to be a new phase, and the observed reflections were indexed on a monoclinic unit cell with parameters 7.864(9), 4.400(5), 6.817(6) Å and $\beta = 93.0(1)^{\circ}$, V = 235.6(4) (Å)³. This unit cell would be a basis cell for this phase. However, the exact structure and unit cell has to be derived from HREM. The monoclinic phase reported for WO_{2.92} [JCPDS 30-1387] has the lattice parameters as 11.93, 3.82, and 59.72 Å with $\beta = 98.3^{\circ}$. There are a number of monoclinic phases reported in W-O system, viz. WO_{2.90} [JCPDS 5-386], WO₃ [JCPDS 43-1035], WO_{2.72} [JCPDS-5-392]. The unit cell parameters reported for WO_{2.90} are 12.05,

3.767, 23.59 Å and $\beta = 94.72$; for WO₃ are 7.297, 7.539, 7.688 Å, $\beta = 90.91$; for WO_{2.72} 18.28, 3.775, 13.98 Å and $\beta = 115^{\circ}$. A comparison of the observed lattice parameters for WO_{3-x} in the present investigation and these reported unit cell parameters show that there exists a close similarity in all these phase. Hence, the unit cell parameter for the present phase may be the correct unit cell or the basis cell for a new phase observed in the present investigations.

In a similar way, we have separated the peaks for WO_{3-x} phase obtained at 3 GPa, and 900°C, and the list of assigned reflections is also included in Table VI. This phase could be indexed on a tetragonal unit cell with cell parameters 5.224(2) and 3.865(3) Å. There are several reported bronze structures of tungsten, viz. Na_{0.10}WO₃ [36], Li_{0.95}WO₃ [37], H_{0.23}WO₃ [38] reported to have a similar kind of tetragonal unit cell. Also, WO₃ has a polymorph [39] with similar kind of tetragonal unit cell. It may be mentioned that $WO_{2.90}$ is reported to crystallize in a similar tetragonal unit cell, however, it has tetragonal unit cell at the composition $WO_{2.80}$ with about four fold magnification of the given 'a' axis. Hence, it is inferred that under these experimental conditions, there is a formation of certain composition of WO_{3-x} phase with a tetragonal unit cell. The tetragonal phases have been reported either in metal/hydrogen intercalated tungsten oxides, or reduction of WO₃. Therefore, it can be further ascertained that there is also a tetragonal phase of WO_{3-x} under high pressure and temperature. Similar comparative selection of WO₃ like phases from the product of the experiments at 1.8 GPa and 1030°C, yet another new WO_{3-x} phase was found, which could be indexed on an orthorhombic unit cell with lattice parameters as 21.648(7), 3.927(2) and 13.777(4) Å and V = 1171.2(7) (Å)³. It is reported [34] that a high-pressure form of tungsten oxide, with composition WO_{2.625}, in W-O system, has a quite closely related orthorhombic unit cell. The unit cell parameters for this reported phase [34] has been given as 21.431, 17.766, 3.783 Å. The observed unit cell parameters for the present phase seems to be closely related in two axes, and difference in the third axis shows that there may be a different kind of periodicity. The heavily reduced phase obtained at high pressure and temperature [33] namely $WO_{1,09}$ also has an orthorhombic structure with unit cell parameters 17.16, 10.32, and 3.78 Å. Here it is shown that another WO_{3-x} phase with closely related to the above structure also exists in W-O system, under high pressure and temperature.

4. Conclusion

XRD analyses of samples from TA experiment showed that $Al_2(WO_4)_3$ has a limited stability under pressure and temperature. At a given pressure and beyond certain temperature, it decomposes to AlWO₄ and WO_{3-x} type phase, accompanied by a loss of oxygen, leading to reduction of W^{6+} to lower valency. The left-over WO_3 undergoes a partial oxygen loss, forming WO_{3-r} . A smaller monoclinic unit cell is proposed for the AlWO₄ type phase. A series of experiments at a varying pressure and temperature shows that the decomposition temperature increases as the pressure decreases. At the pressure of 1.5 GPa, temperature of about 900°C is sufficient to cause the decomposition. Several new modifications of WO_{3-x} have been shown to exist in the high pressure and high temperature conditions. However, their detailed structure are yet to be ascertained. In the present study on $Al_2(WO_4)_3$, no irreversible phase transition was observed under pressure alone. It has an excellent stability up to a significantly high pressure (i.e., up to 8 GPa) at room temperature. $Al_2(WO_4)_3$ has limited stability under pressure and temperature. No amorphization was observed in any experiments which is in complete contrast to ZrW₂O₈, which amorphizes at lower pressure.

Acknowledgements

The authors thank to Dr. N. M. Gupta, Head, Applied Chemistry Division, and Dr. B. K. Godwal, Head, High Pressure Physics Division, B. A. R. C., for their support to this work. Dr. M. D. Mathews, Applied Chemistry Division is thanked for the help in thermal expansion measurements.

References

- J. S. O. EVANS, T. A. MARY and A. W. SLEIGHT, J. Solid State Chem. 133 (1997) 580.
- T. A. MARY, J. S. O. EVANS, A. W. SLEIGHT and T. VOGT, *Science* 272 (1996) 90.
- 3. J. S. O. EVANS, T. A. MARY, T. VOGT, M. A. SUBRAMANIAN and A. W. SLEIGHT, *Chem. Mater.* 8 (1996) 2809.
- 4. D. TAYLOR, J. Br. Ceram. Trans. 83 (1984) 129.
- 5. K. ROTTGER, A. ENDRISS, J. IHRINGER, S. DOYLE and W. F. KHUSS, *Acta Cryst.* B **50** (1994) 644.

- 6. P. TACHAUFESER and S. C. PARKER, J. Phys. Chem. 99 (1995) 10600.
- H. HOLZER and D. C. DUNAND, 4th International Conf. On Composite Engg., Hawaii, 1997.
- 8. R. ROY and D. AGRAWAL, *Nature* **388** (1997) 433.
- 9. J. S. O. EVANS, Z. HU, J. D. JORGENSON, D. N. ARGYRIOU, S. SHORT and A. W. SLEIGHT, *Science* 275 (1997) 61.
- 10. Z. HU, J. D. JORGENSION, S. TESLIC, S. SHORT, D. ARGYRIOU, J. S. O. EVANS and A. W. SLEIGHT, *Physica* B 241 (1998) 370.
- 11. C. A. PEROTTONI and J. A. H. DA JORNADA, *Science* **280** (1998) 886.
- 12. S. K. SIKKA, Metals, Materials, and Processes 3 (1992) 303.
- E. M. LEVIN, C. R. ROBIN and H. F. MCMURDIE, Fig. 2350 in "Phase Diagrams for Ceramist" 1969 (Suppl) Compiled by NBS, The Am. Ceramic Soc.
- 14. D. C. CRAIG and N. C. STEPHENSON, Acta. Cryst. B 24 (1968) 1250.
- 15. A. W. SLEIGHT and L. H. BRIXNER, J. Solid State Chem. 7 (1973) 172.
- J. HANUJA, M. MACZKA, K. HERMANOWICZ, M. ANDRUSZKIEWICZ and A. PIETRASZKO, *ibid.* 105 (1993) 49.
- N. IMANAKA, S. TAMURA, M. HIRAIWA, G. ADACHI, H. DABKOWSKA, A. DABKOWSKA and J. E. GREEDAN, *Chem. Mater.* 10 (1998) 2542.
- S. N. VAIDYA, D. K. JOSHI and C. KARUNAKARAN, *Indian J. Tech.* 14 (1976) 679.
- 19. C. KARUNAKARAN and S. N. VAIDYA, *High-Temp. High-Press.* **26** (1994) 393.
- 20. S. C. ABRAHAM and J. L. BERSTEIN, J. Chem. Physics 45 (1966) 2745.
- 21. W. T. A. HARRISON, U. CHOWDHARY, C. J. MACHIELS, A. W. SLEIGHT and A. K. CHEETAM, J. Solid State Chem. 60 (1985) 101.
- 22. D. A. WOODCOCK, P. LIGHTFOOT and C. RITTER, *ibid.* **149** (2000) 92.
- 23. J. S. O. EVANS, T. A. MARY and A. W. SLEIGHT, *ibid.* **137** (1998) 148.
- 24. Idem., Physica B 241 (1998) 311.
- 25. S. K. SIKKA and S. M. SHARMA, *Current Sci.* **63** (1993) 317.
- 26. S. N. VAIDYA, unpublished work.
- 27. J. P. DOUMERC, M. VLASSE, M. POUCHARD and P. HAGENMULLER, *J. Solid State Chem.* **14** (1975) 144.
- I. I. VISHNEVSKII, A. M. GAVARISH, N. V. GULKO,
 G. G. ELISEEVA and N. D. TALYANSKAYA, *Russ. J. Inorg. Chem. (Engl. Trans.)* 23 (1978) 121.
- 29. A. F. WELLS, "Structural Inorganic Chemistry" (Oxford University Press, London, 1962).
- 30. J. SENSGAS and J. GALY, J. Solid State Chem. $10\ (1974)\ 5.$
- 31. A. MAGNELI, Acta Cryst. 6 (1953) 495.
- 32. J. BOOTH, T. EKSTROM, E. IGUCHI and R. J. D. TILLEY, J. Solid State Chem. 41 (1982) 293.
- 33. YU. A. BARABARENKOV, N. D. ZAKHAROV, I. P. ZIBROV, V. P. FILONENKO and P. WERNER, Acta Cryst. B 48 (1992) 572.
- 34. Idem., ibid. 49 (1993) 169.
- 35. M. SUNDBERG, N. D. ZAKHAROV, I. P. ZIBROV, YU. A. BARABARENKOV, V. P. FILONENKO and P. WERNER, *ibid.* 49 (1993) 951.
- 36. A. MAGNELI, Acta Chem. Scand. 5 (1951) 670.
- 37. Q. ZHONG, J. R. DAHN and K. COLBOW, *Phy. Rev.* B **46** (1992) 2554.
- 38. P. G. DICKENS and R. J. HURDITCH, *Nature* **215** (1967) 1266.
- 39. W. L. KEHL, R. G. HAY and W. WAHL, J. Appl. Phys. 23 (1952) 212.

Received 24 April 2001 and accepted 14 February 2002